Locally conservative finite difference schemes for the Modified KdV equation

Abstract

Finite diffrence schemes that preserve two conservation laws of a given partial differential equation can be found directly by a recently-developed symbolic approach. Until now, this has been used only for equations with quadratic nonlinearity. In principle, a simplified version of the direct approach also works for equations with polynomial nonlinearity of higher degree. For the Modified Korteweg-de Vries equation, whose nonlinear term is cubic, this approach yields several new families of second-order accurate schemes that preserve mass and either energy or momentum. Two of these families contain Average Vector Field schemes of the type developed by Quispel and co-workers. Numerical tests show that each family includes schemes that are highly accurate compared to other mass-preserving methods that can be found in the literature

    Similar works