research

Channel Estimation for Massive MIMO-OFDM Systems by Tracking the Joint Angle-Delay Subspace

Abstract

In this paper, we propose joint angle-delay subspace based channel estimation in single cell for broadband massive multiple-input and multiple-output (MIMO) systems employing orthogonal frequency division multiplexing (OFDM) modulation. Based on a parametric channel model, we present a new concept of the joint angle-delay subspace which can be tracked by the low-complexity low-rank adaptive filtering (LORAF) algorithm. Then, we investigate an interference-free transmission condition that the joint angle-delay subspaces of the users reusing the same pilots are non-overlapping. Since the channel statistics are usually unknown, we develop a robust minimum mean square error (MMSE) estimator under the worst precondition of pilot decontamination, considering that the joint angle-delay subspaces of the interfering users fully overlap. Furthermore, motivated by the interference-free transmission criteria, we present a novel low-complexity greedy pilot scheduling algorithm to avoid the problem of initial value sensitivity. Simulation results show that the joint angle-delay subspace can be estimated effectively, and the proposed pilot reuse scheme combined with robust MMSE channel estimation offers significant performance gains

    Similar works