research

The Performance of Natural Ventilation In A Dance Studio – Lessons From Tracer Gas Measurements And Control Integration

Abstract

The naturally ventilated, three storey School of Arts Jarman Building provides two dance studios, an exhibition gallery, teaching rooms, video editing suites and offices. The main dance studio is double-height, has underfloor heating and accommodates sixty people. Fresh air enters from low level perimeter louvres and exits at high level through a stack that rises through the third storey to a stack terminal with motorized louvres. Tracer gas (CO2) measurements were used to measure the ventilation rate in conjunction with hot-wire anemometry in the stack tower. The results showed that when all air inlet and exit louvres were set to closed, the residual air flow up the stack was 0.33m3/s representing a potential heat loss of 9kW in winter at 0°C outside. When the louvres were all open, the air flow increased to between 0.49 and 0.62m3/s, a level consistent with the studio’s design occupancy. It was found that the studio’s 4m high perimeter curtains represent a barrier to fresh air entering the main room space and cause the incoming air to migrate upwards towards the stack exit and effectively bypass the central part of the studio. Tracer gas decay rates showed that the main space experienced an air exchange rate 50% less than that for the overall studio. An investigation of the controls also revealed that the underfloor heating system operated independently of the control of the stack ventilation system, leading to simultaneous heating and venting. The research shows the vital importance of prescribing contractually that key controls are integrated, that fresh air dampers are well-sealed when closed, and the importance of designing a fresh air supply that matches the way a space is used

    Similar works