We consider an alternative warm inflationary scenario in which n scalar
fields coupled to a dissipative matter fluid cooperate to produce power--law
inflation. The scalar fields are driven by an exponential potential and the
bulk dissipative pressure coefficient is linear in the expansion rate. We find
that the entropy of the fluid attains its asymptotic value in a characteristic
time proportional to the square of the number of fields. This scenario remains
nearly isothermal along the inflationary stage. The perturbations in energy
density and entropy are studied in the long--wavelength regime and seen to grow
roughly as the square of the scale factor. They are shown to be compatible with
COBE measurements of the fluctuations in temperature of the CMB.Comment: 13 pages, Revtex 3 To be published in Physical Review