Abstract

We have mapped the dark cloud L183 in the far-infrared at 100um and 200um with the ISOPHOT photometer aboard the ISO satellite. The observations make it possible for the first time to study the properties of the large dust grains in L183 without confusion from smaller grains. The observations show clear colour temperature variations which are likely to be caused by changes in the emission properties of the dust particles. In the cloud core the far-infrared colour temperature drops below 12K. The data allow a new determination of the cloud mass and the mass distribution. The mass within a radius of 10 arcmin from the cloud centre is 25 Msun. We have mapped the cloud in several molecular lines including DCO+(2-1) and H13CO+(1-0). These species are believed to be tracers of cold and dense molecular material and we detect a strong anticorrelation between the DCO+ emission and the dust colour temperatures. In particular, the DCO+(2-1) emission is not detected towards the maximum of the 100um emission where the colour temperature rises above 15K. The H13CO+ emission follows the DCO+ distribution but CO isotopes show strong emission even towards the 100um peak. A comparison of the DCO+ and C18O maps shows sharp variations in the relative intensities of the species. Morphologically the 200um dust emission traces the distribution of dense molecular material as seen e.g. in C18O lines. A comparison with dust column density shows that C18O is depleted by a factor of 1.5 in the cloud core. We present results of R- and B-band starcounts. The extinction is much better correlated with the 200um than with the 100um emission. Based on the 200um correlation at low extinction values we deduce a value of ~17mag for the visual extinction towards the cloud centre.Comment: to be published in A&

    Similar works