Background subtraction is one of the most important parts in image and video processing field. There are some unnecessary parts during the image or video processing, and should be removed, because they lead to more execution time or required memory. Several subtraction methods have been presented for the time being, but find the best-suited method is an issue, which this study is going to address. Furthermore, each process needs to the specific subtraction technique, and knowing this issue helps researchers to achieve faster and higher performance in their research. This paper presents a comparative study of several existing background subtraction methods which have been investigated from simple background subtraction to more complex statistical techniques. The goal of this study is to provide a view of the strengths and drawbacks of the widely used methods. The methods are compared based on their memory requirement, the computational time and their robustness of different videos. Finally, a comparison between the existing methods has been employed with some factors like computational time or memory requirements. It is also hoped that this analysis helps researchers to address the difficulty of selecting the most convenient method for background subtraction