Abstract

We present optical and near-infrared light curves and optical spectra of SN 2013dx, associated with the nearby (redshift 0.145) gamma-ray burst GRB 130702A. The prompt isotropic gamma-ray energy released from GRB 130702A is measured to be Eγ,iso=6.41.0+1.3×1050E_{\gamma,\mathrm{iso}} = 6.4_{-1.0}^{+1.3} \times 10^{50}erg (1keV to 10MeV in the rest frame), placing it intermediate between low-luminosity GRBs like GRB 980425/SN 1998bw and the broader cosmological population. We compare the observed grizg^{\prime}r^{\prime}i^{\prime}z^{\prime} light curves of SN 2013dx to a SN 1998bw template, finding that SN 2013dx evolves 20\sim20% faster (steeper rise time), with a comparable peak luminosity. Spectroscopically, SN 2013dx resembles other broad-lined Type Ic supernovae, both associated with (SN 2006aj and SN 1998bw) and lacking (SN 1997ef, SN 2007I, and SN 2010ah) gamma-ray emission, with photospheric velocities around peak of \sim21,000 km s1^{-1}. We construct a quasi-bolometric (grizyJHg^{\prime}r^{\prime}i^{\prime}z^{\prime}yJH) light curve for SN 2013dx, and, together with the photospheric velocity, we derive basic explosion parameters using simple analytic models. We infer a 56^{56}Ni mass of MNi=0.38±0.01M_{\mathrm{Ni}} = 0.38\pm 0.01M_{\odot}, an ejecta mass of Mej=3.0±0.1M_{\mathrm{ej}} = 3.0 \pm 0.1 M_{\odot}, and a kinetic energy of EK=(8.2±0.40)×1051E_{\mathrm{K}} = (8.2 \pm 0.40) \times 10^{51}erg (statistical uncertainties only), consistent with previous GRB-associated SNe. When considering the ensemble population of GRB-associated SNe, we find no correlation between the mass of synthesized 56^{56}Ni and high-energy properties, despite clear predictions from numerical simulations that MNiM_{\mathrm{Ni}} should correlate with the degree of asymmetry. On the other hand, MNiM_{\mathrm{Ni}} clearly correlates with the kinetic energy of the supernova ejecta across a wide range of core-collapse events

    Similar works