Non-genomic steroid receptors in the bovine ovary

Abstract

Over the last few years, rapid and physiologically important non-genomic actions of all classes of steroid hormones have been described in many cell types. A putative non-genomic membrane progesterone receptor (NGPR) was the first, and so far the only, non-genomic steroid receptor cloned. Two homologous {NGPR} proteins have been identified in the human, and a similar protein in the bovine and rat. Various detection methods have been used to identify putative {NGPRs} in a range of tissues: however, different methods often yield quite different molecular weights, and probably detect distinct moieties. We describe some properties of the specific cell-surface membrane binding sites for [3H]-progesterone in enriched cell membrane preparations of bovine luteal and follicular cells. Similar binding sites were also detected in cell-membranes of some (but not all) bovine tissues. Western blots of detergent extracts of bovine luteal membranes identified a protein (85 kDa) that reacted with an antiserum to the N-terminal peptide of porcine NGPR. Activity was low in native non-denatured extracts, but increased dramatically in a dose-dependent manner following pretreatment with the cholesterol-complexing agent, digitonin. This protein was co-precipitated by antisera to caveolin. In contrast, a specific monoclonal antibody to the ligand binding domain of the genomic progesterone receptor (Mab C262) detected two proteins (Mr, 55 and 60 kDa) in luteal membrane detergent extracts. Immunostaining of these proteins by Mab {C262} was abolished by digitonin concentration-dependent manner in non-denatured extracts. However, both proteins were unaffected by digitonin in fully denatured detergent extracts, suggesting that digitonin induced a conformational change in the native protein that prevented binding of Mab {C262} to its epitope. Our data suggest the presence of a complex of two or more distinct membrane-associated progesterone-binding proteins in bovine luteal membranes. Moreover, their conformations are specifically affected by removal of bound cholesterol

    Similar works

    Full text

    thumbnail-image

    Available Versions