Abstract

The statistical properties of a map of the primary fluctuations in the cosmic microwave background (CMB) may be specified to high accuracy by a few thousand power spectra measurements, provided the fluctuations are gaussian, yet the number of parameters relevant for the CMB is probably no more than about 10-20. There is consequently a large degree of redundancy in the power spectrum data. In this paper, we show that the MOPED data compression technique can reduce the CMB power spectrum measurements to about 10-20 numbers (one for each parameter), from which the cosmological parameters can be estimated virtually as accurately as from the complete power spectrum. This offers opportunities for very fast parameter estimation from real and simulated CMB skies, with accurate likelihood calculations at Planck resolution being speeded up by a factor of around five hundred million.Comment: version to appear in MNRA

    Similar works

    Available Versions

    Last time updated on 04/12/2019