research

Numerical Simulations of Pinhole and Single Mode Fibre Spatial Filters for Optical Interferometers

Abstract

We use a numerical simulation to investigate the effectiveness of pinhole spatial filters at optical/IR interferometers and to compare them with single-mode optical fibre spatial filters and interferometers without spatial filters. We show that fringe visibility measurements in interferometers containing spatial filters are much less affected by changing seeing conditions than equivalent measurements without spatial filters. This reduces visibility calibration uncertainties, and hence can reduce the need for frequent observations of separate astronomical sources for calibration of visibility measurements. We also show that spatial filters can increase the signal-to-noise ratios of visibility measurements and that pinhole filters give signal-to-noise ratios within 17% of values obtained with single-mode fibres for aperture diameters up to 3r_0. Given the simplicity of the use of pinhole filters we suggest that it represents a competitive, if not optimal, technique for spatial filtering in many current and next generation interferometers.Comment: 7 pages, 7 postscript figures. Accepted by MNRA

    Similar works

    Available Versions

    Last time updated on 01/04/2019