research

Analysis of damage and fracture formulations in cold extrusion

Abstract

In forming processes, components generally undergo large deformations. This induces the evolution of damage, which can influence material and product properties. To capture these effects, a continuum damage mechanics (CDM) model, based on the work of Lemaitre [8] and Soyarslan [13, 14] as well as different fracture criteria according to Cockcroft and Latham [2], Freudenthal [4] and Oyane [10] are implemented and in- vestigated. While the CDM theory considers the evolution of damage and the associated softening, fracture criteria do not affect the results of the mechanical finite element (FE) analysis. However, a coupling is generally possible via element deletion, but material softening cannot be depicted in the simulation. Tensile tests with notched specimens are performed in order to obtain the material parameters associated with these models by inverse parameter identification processes. The optimized set of parameters is finally ap- plied to the damage and fracture models used for the FE simulations of a cold extrusion process, which are investigated in terms of damage evolution and material failure. It is demonstrated that the CDM model predicts the evolution of damage observed for differ- ent process parameters in cold extrusion quantitatively. The prediction of the failure by the fracture criteria does not agree well with the experiments

    Similar works