research

Simulating Electron Transport and Synchrotron Emission in Radio Galaxies: Shock Acceleration and Synchrotron Aging in Three-Dimensional Flows

Abstract

We present the first three-dimensional MHD radio galaxy simulations that explicitly model transport of relativistic electrons, including diffusive acceleration at shocks as well as radiative and adiabatic cooling in smooth flows. We discuss three simulations of light Mach 8 jets, designed to explore the effects of shock acceleration and radiative aging on the nonthermal particle populations that give rise to synchrotron and inverse-Compton radiations. We also conduct detailed synthetic radio observations of our simulated objects. We have gained several key insights from this approach: 1. The jet head in these multidimensional simulations is extremely complex. The classical jet termination shock is often absent, but motions of the jet terminus spin a ``shock-web complex'' within the backflowing jet material of the head. 2. Understanding the spectral distribution of energetic electrons in these simulations relies partly upon understanding the shock-web complex, for it can give rise to distributions that confound interpretation in terms of the standard model for radiative aging of radio galaxies. 3. The magnetic field outside of the jet itself becomes very intermittent and filamentary in these simulations, yet adiabatic expansion causes most of the cocoon volume to be occupied by field strengths considerably diminished below the nominal jet value. Thus population aging rates vary considerably from point to point.Comment: 44 pages, 6 figures; to be published in the Astrophysical Journal (August 2001); higher-quality figures can be found at http://www.msi.umn.edu/Projects/twj/radjet/radjet.htm

    Similar works