We are concerned with large scale magnetic field dynamo generation and
propagation of magnetic fronts in turbulent electrically conducting fluids. An
effective equation for the large scale magnetic field is developed here that
takes into account the finite correlation times of the turbulent flow. This
equation involves the memory integrals corresponding to the dynamo source term
describing the alpha-effect and turbulent transport of magnetic field. We find
that the memory effects can drastically change the dynamo growth rate, in
particular, non-local turbulent transport might increase the growth rate
several times compared to the conventional gradient transport expression.
Moreover, the integral turbulent transport term leads to a large decrease of
the speed of magnetic front propagation.Comment: 13 pages, 2 figure