A performance, energy consumption and reliability evaluation of workload distribution on heterogeneous devices

Abstract

The constant need of higher performances and reduced power consumption has lead vendors to design heterogeneous devices that embed traditional Central Process Unit (CPU) and an accelerator, like a Graphics Processing Unit (GPU) or Field-programmable Gate Array (FPGA). When the CPU and the accelerator are used collaboratively the device computational performances reach their peak. However, the higher amount of resources employed for computation has, potentially, the side effect of increasing soft error rate. This thesis evaluates the reliability behaviour of AMD Kaveri Accelerated Processing Units (APU) executing four heterogeneous applications, each one representing an algorithm class. The workload is gradually distributed from the CPU to the GPU and both the energy consumption and execution time are measured. Then, an accelerated neutron beam was used to measure the realistic error rates of the different workload distributions. Finally, we evaluate which configuration provides the lowest error rate or allows the computation of the highest amount of data before experiencing a failure. As is shown in this thesis, energy consumption and execution time are mold by the same trend while error rates highly depend on algorithm class and workload distribution. Additionally, we show that, in most cases, the most reliable workload distribution is the one that delivers the highest performances. As experimentally proven, by choosing the correct workload distribution the device reliability can increase of up to 90x.A constante necessidade de maior desempenho e menor consumo de energia levou aos fabricantes a projetar dispositivos heterogêneos que incorporam uma Unidade Central de Processameno (CPU) tradicional e um acelerador, como uma Unidade de Processamento Gráfico (GPU) ou um Arranjo de Portas Programáveis em Campo (FPGA). Quando a CPU e o acelerador são usados de forma colaborativa, o desempenho computacional do dispositivo atinge seu pico. No entanto, a maior quantidade de recursos empregados para o cálculo tem, potencialmente, o efeito colateral de aumentar a taxa de erros. Esta tese avalia a confiabilidade das AMD Kaveri "Accelerated Processing Units"(APUs) executando quatro aplicações heterogêneas, cada uma representando uma classe de algoritmos. A carga de trabalho é gradualmente distribuída da CPU para a GPU e o consumo de energia e o tempo de execução são medidos. Em seguida, um feixe de neutrões é utilizado para medir as taxas de erro reais das diferentes distribuições de carga de trabalho. Por fim, avalia-se qual configuração fornece a menor taxa de erro ou permite o cálculo da maior quantidade de dados antes de ocorrer uma falha. Como é mostrado nesta tese, o consumo de energia e o tempo de execução são moldados pela mesma tendência, enquanto as taxas de erro dependem da classe de algoritmos e da distribuição da carga de trabalho. Além disso, é mostrado que, na maioria dos casos, a distribuição de carga de trabalho mais confiável é a que fornece o maior desempenho. Como comprovado experimentalmente, ao escolher a distribuição de carga de trabalho correta, a confiabilidade do dispositivo pode aumentar até 9 vezes

    Similar works