Global analysis of sRNA target genes in Mycoplasma hyopneumoniae

Abstract

Background: Small RNAs (sRNAs) are noncoding molecules that regulate different cellular activities in several bacteria. The role of sRNAs in gene expression regulation is poorly characterized in the etiological agent of porcine enzootic pneumonia Mycoplasma hyopneumoniae. We performed a global analysis of the sRNAs, sRNA target genes and regulatory elements previously identified in their genome and analyzed the expression of some sRNAs and their target genes by quantitative RT-PCR (qPCR) in three different culture conditions. Results: Seven of the 145 sRNA target genes are organized as monocistronic genes (mCs) while the other 138 sRNA target genes are organized into transcriptional units (TU). The identification of transcriptional regulatory elements (promoter motif, DNA repeat sequence or intrinsic terminator) was verified in 116 of the 145 sRNA target genes. Moreover, the 29 sRNA target genes without regulatory elements revealed the presence of at least one regulatory element in the boundaries of the TU or in other internal genes of the TU. We verified that 16 sRNAs showed differential expression, seven in heat shock condition and 14 in oxidative stress condition. Analysis of the differential expression of the sRNA target genes showed that the tested sRNAs possibly regulate gene expression. The sRNA target genes were up- or down-regulated possibly in response to sRNA only under oxidative stress condition. Moreover, the sRNA target genes are involved in diverse processes of the cell, some of which could be linked to transcription processes and cell homeostasis. Conclusion: Our results indicate that bacterial sRNAs could regulate a number of targets with various outcomes, and different correlations between the levels of sRNA transcripts and their target gene mRNAs were found, which suggest that the regulation of gene expression via sRNAs may play an important role in mycoplasma

    Similar works