We investigate inflation driven by the evolution of highly excited quantum
states within the framework of out of equilibrium field dynamics. These states
are characterized by a non-perturbatively large number of quanta in a band of
momenta but with vanishing expectation value of the scalar field.They represent
the situation in which initially a non-perturbatively large energy density is
localized in a band of high energy quantum modes and are coined tsunami-waves.
The self-consistent evolution of this quantum state and the scale factor is
studied analytically and numerically. It is shown that the time evolution of
these quantum states lead to two consecutive stages of inflation under
conditions that are the quantum analogue of slow-roll. The evolution of the
scale factor during the first stage has new features that are characteristic of
the quantum state. During this initial stage the quantum fluctuations in the
highly excited band build up an effective homogeneous condensate with a non-
perturbatively large amplitude as a consequence of the large number of quanta.
The second stage of inflation is similar to the usual classical chaotic
scenario but driven by this effective condensate.The excited quantum modes are
already superhorizon in the first stage and do not affect the power spectrum of
scalar perturbations. Thus, this tsunami quantum state provides a field
theoretical justification for chaotic scenarios driven by a classical
homogeneous scalar field of large amplitude.Comment: LaTex, 36 pages, 7 .ps figures. Improved version to appear in Nucl.
Phys.