Abstract

Little is known about the statistics of gravitationally lensed quasars at large (7''-30'') image separations, which probe masses on the scale of galaxy clusters. We have carried out a survey for gravitationally-lensed objects, among sources in the FIRST 20cm radio survey that have unresolved optical counterparts in the digitizations of the Palomar Observatory Sky Survey. From the statistics of ongoing surveys that search for quasars among FIRST sources, we estimate that there are about 9100 quasars in this source sample, making this one of the largest lensing surveys to date. Using broad-band imaging, we have isolated all objects with double radio components separated by 5''-30'', that have unresolved optical counterparts with similar BVI colours. Our criteria for similar colours conservatively allow for observational error and for colour variations due to time delays between lensed images. Spectroscopy of these candidates shows that none of the pairs are lensed quasars. This sets an upper limit (95% confidence) on the lensing fraction in this survey of 3.3x10^-4, assuming 9100 quasars. Although the source redshift distribution is poorly known, a rough calculation of the expected lensing frequency and the detection efficiencies and biases suggests that simple theoretical expectations are of the same order of magnitude as our observational upper limit. Our procedure is novel in that our exhaustive search for lensed objects does not require prior identification of the quasars in the sample as such. Characterization of the FIRST-selected quasar population will enable using our result to constrain quantitatively the mass properties of clusters.Comment: 10 pages, accepted for publication in MNRA

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 24/03/2019