We present a photometric method for identifying stars, galaxies and quasars
in multi-color surveys, which uses a library of >65000 color templates. The
method aims for extracting the information content of object colors in a
statistically correct way and performs a classification as well as a redshift
estimation for galaxies and quasars in a unified approach. For the redshift
estimation, we use an advanced version of the MEV estimator which determines
the redshift error from the redshift dependent probability density function.
The method was originally developed for the CADIS survey, where we checked
its performance by spectroscopy. The method provides high reliability (6 errors
among 151 objects with R<24), especially for quasar selection, and redshifts
accurate within sigma ~ 0.03 for galaxies and sigma ~ 0.1 for quasars.
We compare a few model surveys using the same telescope time but different
sets of broad-band and medium-band filters. Their performance is investigated
by Monte-Carlo simulations as well as by analytic evaluation in terms of
classification and redshift estimation. In practice, medium-band surveys show
superior performance. Finally, we discuss the relevance of color calibration
and derive important conclusions for the issues of library design and choice of
filters. The calibration accuracy poses strong constraints on an accurate
classification, and is most critical for surveys with few, broad and deeply
exposed filters, but less severe for many, narrow and less deep filters.Comment: 21 pages including 10 figures. Accepted for publication in Astronomy
& Astrophysic