Assuming that damped Lyman-alpha(DLA) systems are galactic discs, we
calculate the corresponding evolution of metal abundances. We use detailed
multi-zone models of galactic chemical evolution (reproducing successfully the
observed properties of disc galaxies) and appropriate statistics (including
geometrical propability factors) to calculate the average metallicity as a
function of redshift. The results are compatible with available observations,
provided that observational biases are taken into account, as suggested by
Boisse et al. (1998). In particular, high column density and high metallicity
systems are not detected because the light of backround quasars is severely
extinguished, while low column density and low metallicity systems are not
detectable through their absorption lines by current surveys. We show that
these observational constraints lead to a ``no-evolution'' picture for the DLA
metallicity, which does not allow to draw strong conclusions about the nature
of those systems or about their role in ``cosmic chemical evolution''.Comment: 7 pages, 5 figures, MNRAS in pres