We examine the angular momentum transport properties of disks composed of
macroscopic particles whose velocity dispersions are externally enhanced
(``stirred''). Our simple Boltzmann equation model serves as an analogy for
unmagnetized fluid disks in which turbulence may be driven by thermal
convection. We show that interparticle collisions in particle disks play the
same role as fluctuating pressure forces and viscous dissipation in turbulent
disks: both transfer energy in random motions associated with one direction to
those associated with another, and convert kinetic energy into heat. The
direction of angular momentum transport in stirred particle and fluid disks is
determined by the direction of external stirring and by the properties of the
collision term in the Boltzmann equation (or its analogue in the fluid
problem). In particular, our model problem yields inward transport for
vertically or radially stirred disks, provided collisions are suitably
inelastic; the transport is outwards in the elastic limit. Numerical
simulations of hydrodynamic turbulence driven by thermal convection find inward
transport; this requires that fluctuating pressure forces do little to no work,
and is analogous to an externally stirred particle disk in which collisions are
highly inelastic.Comment: 15 pages; final version accepted by ApJ; minor changes, some
clarificatio