Type III Secreted Effectors as Molecular Probes of Eukaryotic Systems

Abstract

Successful bacterial pathogens manipulate crucial intracellular host processes as a virulence strategy. One particular potent mechanism utilized by bacterial phytopathogens is to inject virulence factors (effectors) directly into the host cell. While many effectors have been identified and shown to suppress plant immune responses, very few have well-characterized enzymatic activities or host targets. To overcome the challenges of functional analysis of effectors, I designed two heterologous screens to characterize effector proteins of the bacterial phytopathogen Pseudomonas syringae. Specifically, my objective was to identify those P. syringae effectors that target evolutionarily conserved host proteins or processes and to subsequently elucidate the molecular mechanisms of these effectors. The first heterologous screen that I performed was to utilize tandem-affinity-purification (TAP)-tagged effectors in human cells to identify potential interacting host proteins. The second heterologous screen iii utilized a high-throughput genomics approach in yeast, known as the pathogenic genetic array (PGA), to characterize P. syringae effectors. Using the first heterologous approach, I have identified HopZ1a as the first bacterial phytopathogen effector that binds tubulin. I have shown that HopZ1a is an acetyltransferase activated by the eukaryotic co-factor, phytic acid. In vitro, activated HopZ1a acetylates itself and tubulin. In Arabidopsis thaliana, activated HopZ1a causes microtubule destruction, disrupts the secretory pathway and suppresses cell wall-mediated defense. The acetyltransferase activity of HopZ1a is dependent on the conserved catalytic cysteine residue (C216) and a conserved lysine residue (K289). Using the second heterologous screen in yeast, I have shown that HopZ1a may target the mitogen-activated protein kinase (MAPK) signaling cascades. Together, my work has identified novel eukaryotic targets and elucidated the virulence functions of HopZ1a.Ph

    Similar works