Hip Resurfacing Arthroplasty (HRA) is a treatment option for the patients with the advanced hip disease; it is considered as the most technically difficult techniques of all procedures recommended for osteonecrosis of the hip. Technically, the currently applied HRA surgeries lead to unstable and inconsistent results. Surgeons rely a lot on the manual technique and conventional tools as well as their skills to determine the right drilling angle for locating the implant system. Although the robotic and surgical planning systems are available for HRA, the drilling line is still defined geometrically and intra-operatively, not fully considering about the biomechanics aspects of the implant and bone structure. In this paper, an optimal surgical aid system for HRA is proposed. With the integration of the state of the art biomedical modelling, pre-operative planning and personalised surgical tools, knowledge based and expert system, as well as biomechanics modelling and analysis, the precision, safety and speed of surgery are improved, the complexity of surgery is reduced, and therefore the survival rate of the implant is increased. Especially, the proposed system provides a cheap and practically feasible solution with the integration of expertise from both engineering and medicine for improving the treatment quality of the patients