Time integration damage model for Sn3.5Ag solder interconnect in power electronic module

Abstract

In this study, existing damage evolution models in the literature for solder layer in microelectronics have been reviewed. A two dimensional approximate semi-analytic time integration damage indicator model for Sn3.5Ag material solder interconnect in power electronic module has been proposed. The proposed time dependent damage model is dependent on the inelastic strain, the accumulated damage at previous time step and the temperature. The strains were approximated semi-analytically. A numerical modelling methodology combined with the data from public domain for crack initiation and crack propagation of Sn3.5Ag solder layer has been adopted to extract the parameter values of the proposed damage model. The proposed model has advantages over fatigue lifetime models as it instantaneously predicts the damage over time for any loading history. The damage model was compared with Ansys FEA tool based damage prediction using Coffin Manson and Paris law fatigue models. The predicted damage value by the model is slightly higher than those models. Furthermore, this damage model does not need a time consuming numerical simulation evaluating the damage model variables, which is an advantag

    Similar works