thesis

The cyanobacterial rhomboid protease is a regulator of the CCM

Abstract

Cyanobacteria are aquatic photosynthetic bacteria and useful models for study of the chloroplast and photosynthesis. We are studying a ‘rhomboid’ membrane-located proteases in Synechocystis sp. PCC 6803, which appears to function as a previously undiscovered regulator of the carbon concentrating mechanism (CCM) of this phototroph. Rhomboids are almost ubiquitous across evolution, and are known to activate diverse cellular processes via proteolysis of their specific, membrane-sequestered substrates. Although this well-conserved family has solved crystal structures of bacterial enzymes such as Escherichia coli GlpG, ironically, most work has been carried out on eukaryotic representatives. Following our study of the Arabidopsis thaliana chloroplast RBL10 protease, we identified cyanobacterial orthologues with the aim of discovering if roles might be conserved between these and organellar rhomboids. Molecular biology and reverse-genetics studies were made on slr1461, a mutant in the single rhomboid protease of Synechocystis. When photosynthetic parameters were investigated, it could be seen that inactivation of slr1461 did not affect nonphotochemical quenching, unlike the chloroplast rbl10 mutant, but Slr1461 was required for reduction of photosynthetic activity in mixotrophic conditions. This reduction allows cyanobacteria to avoid expending energy on the uptake of CO2 when an organic carbon source can be utilised: as might be expected, therefore, Slr1461 transcription was linked with downregulation of genes encoding proteins facilitating high-affinity CO2 import under high CO2 and mixotrophic conditions. Quantitative RT-PCR of CCM network genes suggested that Slr1461 is located upstream of known regulators, including another membrane protease, the Slr0228 FtsH, and a central, controlling transcription factor NdhR

    Similar works