research

Effects of centrifugal stress on cell disruption and glycerol leakage from Dunaliella salina

Abstract

Dunaliella salina accumulates large amounts of intracellular glycerol in response to the increases in salt concentration, thus is a potential source for producing fuel grade glycerol as an alternative to biodiesel-derived crude glycerol. D. salina lacks a cell wall; therefore the mode of harvesting Dunaliella cells is critical to avoid cell disruption caused by extreme engineering conditions. This study explored cell disruption and glycerol leakage of D. salina under various centrifugal stresses during cell harvesting. Results show a centrifugal g-force lower than 5000 g caused little cell disruption, while a g-force higher than 9000 g led to ~40 % loss of the intact cells and glycerol yields from the recovered algal pellets. Theoretical calculations of the centrifugal stresses that could rupture Dunaliella cells were in agreement with the experimental results, indicating optimisation of centrifugation conditions is important for recovering intact cells of from D. salina enriched in glycerol

    Similar works