We show the equivalence of the Pieri formula for flag manifolds and certain
identities among the structure constants, giving new proofs of both the Pieri
formula and of these identities. A key step is the association of a symmetric
function to a finite poset with labeled Hasse diagram satisfying a symmetry
condition. This gives a unified definition of skew Schur functions, Stanley
symmetric function, and skew Schubert functions (defined here). We also use
algebraic geometry to show the coefficient of a monomial in a Schubert
polynomial counts certain chains in the Bruhat order, obtaining a new
combinatorial construction of Schubert polynomials.Comment: 24 pages, LaTeX 2e, with epsf.st