research

Averages of Fourier coefficients of Siegel modular forms and representation of binary quadratic forms by quadratic forms in four variables

Abstract

Let d-d be a a negative discriminant and let TT vary over a set of representatives of the integral equivalence classes of integral binary quadratic forms of discriminant d-d. We prove an asymptotic formula for dd \to \infty for the average over TT of the number of representations of TT by an integral positive definite quaternary quadratic form and obtain results on averages of Fourier coefficients of linear combinations of Siegel theta series. We also find an asymptotic bound from below on the number of binary forms of fixed discriminant d-d which are represented by a given quaternary form. In particular, we can show that for growing dd a positive proportion of the binary quadratic forms of discriminant d-d is represented by the given quaternary quadratic form.Comment: v5: Some typos correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions