research

A sequential Monte Carlo approach to computing tail probabilities in stochastic models

Abstract

Sequential Monte Carlo methods which involve sequential importance sampling and resampling are shown to provide a versatile approach to computing probabilities of rare events. By making use of martingale representations of the sequential Monte Carlo estimators, we show how resampling weights can be chosen to yield logarithmically efficient Monte Carlo estimates of large deviation probabilities for multidimensional Markov random walks.Comment: Published in at http://dx.doi.org/10.1214/10-AAP758 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Similar works

    Full text

    thumbnail-image

    Available Versions