Ubiquitous computing technologies offer opportunities to improve treatments for chronic health conditions. Type 1 diabetes is a compelling use-case for such approaches, given its severity, and need for individuals to make frequent care decisions, informed by complex data. However, current apps, typically based on effortful reflection on collected data, generally show poor adoption, lack vital cognitive and emotional support, and are poorly tailored to users’ actual diabetes decision making processes. This thesis investigates how diabetes apps can be improved from a user-centered perspective. An initial questionnaire-based study investigated how well existing diabetes apps meet user needs. Perceived benefits, limitations, and reasons for low adoption rates were identified. A talk-aloud study of detailed user interactions with diabetes logging apps was conducted to characterize the benefits and limitations of diverse UI elements for T1 diabetes management, and to more precisely identify wider problems with current interaction designs. This led to positing a refined version of Mamykina et al.’s model for diabetes self-management, to account for observed practices, whereby the previously accepted habitual and sensemaking cognitive states are augmented by a posited ‘fluid contextual reasoning’ (FCR) mode, which allows multiple contextual factors to be balanced for dynamic course correction when navigating complex situations, using previously learned knowledge. To investigate user perceptions of the levels and kinds of monitoring anticipated in next generation diabetes decision support systems, a 4-week technology probe, in which participants used multiple networked devices and external data aggregation, was used to frame requirements for user-centered development of such future systems. Integrating all of the above work, an iterative design process was undertaken to create DUETS, a card-based system to facilitate reflection by designers, users, and other stakeholders on diabetes support management systems. The resulting tool and method were then implemented and evaluated through structured sessions with stakeholder focus groups