Computational studies on protein-ligand docking

Abstract

This thesis describes the development and refinement of a number of techniques for molecular docking and ligand database screening, as well as the application of these techniques to predict the structures of several protein-ligand complexes and to discover novel ligands of an important receptor protein. Global energy optimisation by Monte-Carlo minimisation in internal co-ordinates was used to predict bound conformations of eight protein-ligand complexes. Experimental X-ray crystallography structures became available after the predictions were made. Comparison with the X-ray structures showed that the docking procedure placed 30 to 70% of the ligand molecule correctly within 1.5A from the native structure. The discrimination potential for identification of high-affinity ligands was derived and optimised using a large set of available protein-ligand complex structures. A fast boundary-element solvation electrostatic calculation algorithm was implemented to evaluate the solvation component of the discrimination potential. An accelerated docking procedure utilising pre-calculated grid potentials was developed and tested. For 23 receptors and 63 ligands extracted from X-ray structures, the docking and discrimination protocol was capable of correct identification of the majority of native receptor-ligand couples. 51 complexes with known structures were predicted. 35 predictions were within 3A from the native structure, giving correct overall positioning of the ligand, and 26 were within 2A, reproducing a detailed picture of the receptor-ligand interaction. Docking and ligand discrimination potential evaluation was applied to screen the database of more than 150000 commercially available compounds for binding to the fibroblast growth factor receptor tyrosine kinase, the protein implicated in several pathological cell growth aberrations. As expected, a number of compounds selected by the screening protocol turned out to be known inhibitors of the tyrosine kinases. 49 putative novel ligands identified by the screening protocol were experimentally tested and five compounds have shown inhibition of phosphorylation activity of the kinase. These compounds can be used as leads for further drug development

    Similar works