unknown

A new user interface for musical timbre design

Abstract

This thesis characterises and addresses problems and issues associated with the design of intuitive user interfaces for timbral control. The usability of a range of synthesis methods and representative implementations of these methods is assessed, and three interface architectures - fixed architecture, architecture specification and direct specification - are identified. The characteristics of each of these architectures, as well as problems of usability inherent to each of them are discussed; it is argued that none of them provide intuitive tools for the manipulation and control of timbre. The study examines the nature of timbre and the notion of timbre space; different kinds of timbre space are considered and criteria are proposed for the selection of suitable timbre spaces as vehicles for synthesis. A number of listening tests, designed to demonstrate the feasibility of subsequent work, were devised and carried out; the results of these tests provide evidence that, where Euclidean distances between sounds located in a given timbre space are reflected in perceptual distances, the ability of subjects to detect relative distances in different parts of the space varies with the perceptual granularity of the space. Three contrasting timbre spaces conforming to the proposed criteria for use in synthesis are constructed; the purpose of these spaces is to provide an environment for a novel user interaction approach for timbral design which incorporates a search strategy based on weighted centroid localization. Two prototypes which exemplify the proposed approach in alternative ways are designed, implemented and tested with potential users in order to validate the approach; a third contrasting prototype which represents a simple contrasting alternative is tested for purposes of comparison. The results of these tests are evaluated and discussed, and areas of further work identified

    Similar works