Due to the self-configuring nature of a Mobile Ad Hoc Network (MANET), each node must participate in the routing process, in addition to its other activities. Therefore, routing in a MANET is especially vulnerable to malicious node activity leading to potentially severe disruption in network communications. The wormhole attack is a particularly severe MANET routing threat since it is easy to launch, can be launched in several modes, difficult to detect, and can cause significant communication disruption. In this paper we establish a practice for feature engineering of network data for wormhole attack prevention and detection with intrusion detection methods based on machine learning