In weakly ionized plasmas neutral flows drag plasma across magnetic field lines generating intense electric fields and currents. An example occurs in the Earth's ionosphere near the geomagnetic equator. Similar processes take place in the Solar chromosphere and magnetohydrodynamic generators. This paper argues that not all convective neutral flows generate electric fields and currents and it introduces the corresponding universal criterion for their formation, ∇×(U×B)≠∂B/∂t, where U is the neutral flow velocity, B is the magnetic field, and t is time. This criterion does not depend on the conductivity tensor, σˆ. For many systems, the displacement current, ∂B/∂t, is negligible making the criterion even simpler. This theory also shows that the neutral-dynamo driver that generates E-fields and currents plays the same role as the DC electric current plays for the generation of the magnetic field in the Biot-Savart law.This work was supported by NSF/DOE Grant No. PHY-1500439, NASA Grant Nos. NNX11A096G and NNX14AI13G, and NSF-AGS Postdoctoral Research Fellowship Award No. 1433536. (PHY-1500439 - NSF/DOE; NNX11A096G - NASA; NNX14AI13G - NASA; 1433536 - NSF-AGS