Abstract

We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maximal possible quantum enhancement amounts generically to a constant factor rather than quadratic improvement. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: dephasing,depolarization, spontaneous emission and photon loss.Comment: 10 pages, 4 figures, presentation imporved, implementation of the semi-definite program finding the precision bounds adde

    Similar works

    Full text

    thumbnail-image

    Available Versions