research

Around Podewski's conjecture

Abstract

A long-standing conjecture of Podewski states that every minimal field is algebraically closed. It was proved by Wagner for fields of positive characteristic, but it remains wide open in the zero-characteristic case. We reduce Podewski's conjecture to the case of fields having a definable (in the pure field structure), well partial order with an infinite chain, and we conjecture that such fields do not exist. Then we support this conjecture by showing that there is no minimal field interpreting a linear order in a specific way; in our terminology, there is no almost linear, minimal field. On the other hand, we give an example of an almost linear, minimal group (M,<,+,0)(M,<,+,0) of exponent 2, and we show that each almost linear, minimal group is elementary abelian of prime exponent. On the other hand, we give an example of an almost linear, minimal group (M,<,+,0)(M,<,+,0) of exponent 2, and we show that each almost linear, minimal group is torsion.Comment: 16 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016