Simulation of fluid flow in a high compression ratio reciprocating internal combustion engine

Abstract

This paper discusses the detailed three-dimensional modelling of a reciprocating engine geometry comprising a flat cylinder head and a bowl-in-piston combustion chamber, simulating the motoring or non-firing conditions. The turbulence is modelled using a standard K-ε model and the results are compared against experimental results from the literature. Computed velocity profiles at time steps close to top centre (TC) are presented. The effect of squish and reverse squish becomes significant in a high compression ratio reciprocating engine. This enhanced fluid movement during a reverse squish regime could have an effect on burn rate, particularly in a spark ignition engine fuelled with biomass-derived producer gas, which has optimum ignition timing close to TC

    Similar works