research

Semidefinite programming in matrix unknowns which are dimension free

Abstract

One of the main applications of semidefinite programming lies in linear systems and control theory. Many problems in this subject, certainly the textbook classics, have matrices as variables, and the formulas naturally contain non-commutative polynomials in matrices. These polynomials depend only on the system layout and do not change with the size of the matrices involved, hence such problems are called "dimension-free". Analyzing dimension-free problems has led to the development recently of a non-commutative (nc) real algebraic geometry (RAG) which, when combined with convexity, produces dimension-free Semidefinite Programming. This article surveys what is known about convexity in the non-commutative setting and nc SDP and includes a brief survey of nc RAG. Typically, the qualitative properties of the non-commutative case are much cleaner than those of their scalar counterparts - variables in R^g. Indeed we describe how relaxation of scalar variables by matrix variables in several natural situations results in a beautiful structure.Comment: 25 pages; surve

    Similar works

    Full text

    thumbnail-image

    Available Versions