Influence of the radio frequency ponderomotive force on anomalous impurity transport in tokamaks

Abstract

Trace impurity transport in tokamaks is studied using an electrostatic, collisionless fluid model for ion-temperature-gradient and trapped-electron mode driven turbulence in the presence of radio frequency (rf) fields, and the results are compared with neoclassical predictions. It is shown that the inward impurity convective velocity (pinch) that is usually obtained can be reduced by the rf fields, in particular close to the wave resonance location where the rf ponderomotive force may be significant. However, the impurity diffusivity and convective velocity are usually similarly affected by the ponderomotive force, and hence the steady-state impurity density peaking factor -∇nz/nz is only moderately affected by the rf fields

    Similar works