In the majority of bacterial and viral infections the generation of cytotoxic T cells is of particular interest because such pathogens are able to escape the host defence mechanisms by surviving intracellularly within the phagocytic cells. To generate a CD8+ T lymphocyte response against exogenous antigens, the prerequisite is their delivery into the cytosol followed by processing and presentation along with class I major histocompatibility complex (MHC-I) molecules. In the present study we describe the method of liposome-based delivery of antigens and other macromolecules into the cytosol of target cells. To develop safe and effective methods for generating CD8+ T lymphocytes, we exploited the fusogenic character of lipids derived from lower organisms, that is baker's yeast (Saccharomyces cerevisiae). The degree of fusion with model membrane systems using yeast lipid liposomes varied from 40-70%, as opposed to 1-8% observed with egg PtdCho liposomes, depending on the assay system used. The fusion of yeast lipid liposomes with macrophages resulted in effective delivery of the entrapped solutes into the cytoplasmic compartment. This was further supported by the inhibition of cellular protein synthesis in J774 A1 cells by ricin A, encapsulated in the yeast lipid liposomes. Interestingly, the model antigen ovalbumin, when entrapped in the yeast lipid liposomes, successfully elicited antigen reactive CD8+ T cell responses. It may be concluded that the liposomes made of lipids derived from S. cerevisiae can spontaneously fuse with macrophages, delivering a significant portion of their contents into the cytoplasmic compartment of the cells