HIGH FIDELITY MEASUREMENT OF BIOELECTRICAL SIGNALS

Abstract

Previous research regarding the acquisition and electrical characterization of bio- electrical signals of both noninvasive “oriundis in vivo”, generally associated with elec- tromyography (EMG), electrocardiography (EKG), or electroencephalography (EEG), and active “oriundis ex vivo et vitro” material characterization, generally associated with bioimpedance spectroscopy (BIS); while successfully providing beneficial results, was ul- timately plagued with a variety of intrinsic electrical distortions [1] [2]. Conversely, the frequent manifestation of such distortions resulted in an investigation into the nature of their occurrence, which subsequently resulted in my research into the nature of such dis- tortions, the conditions in which they occur, useful techniques to model and minimize their impact, and the underlying methodology needed to obtain the highest fidelity possi- ble when acquiring such measurements. Furthermore, the techniques developed are then applied to both noninvasively obtained “oriundis in vivo” and active “oriundis ex vivo et vitro” applied bioelectrical signals, and the compensated measurements are compared with the uncompensated measurements obtained within the previously mentioned research

    Similar works