ENGINEERING BIOCERAMIC MICROSTRUCTURE FOR CUSTOMIZED DRUG DELIVERY

Abstract

One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are a-cristobalite (SiO2, Cris) and ß- rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and the release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated the high affinity between the P-O functional groups, in Rhe and SCPC, and the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 µg Vanc/m2 for Rhe > 4.49 µg Vanc /m2 for SCPC>3.01 µg Vanc /m2 for Cris (p<0.05). Cis loading capacity increased in the order 8.59 µg Vanc /m2 for Cris, 17.8 µg Vanc/m2 for Rhe and 6.03 µg Vanc /m2 for SCPC (p<0.05). The drug release kinetics was dependent on the carrier as well as on the kind of drug. Different burst release and sustained release rates were measured for Vanc and Cis from the same carrier. The percentages of the amount of drug amount released from Cris, Rhe and SCPC during the burst stage (the first 2h) were: 50%, 50%, and 46% of Vanc; and 53.4%, 36.6%, and 30.6 % of Cis, respectively. Burst release correlated with the pore size distribution and surface area. Furthermore, the average rates of sustained release in the period 8-216h from Cris, Rhe and SCPC were: 9.8, 7.2 and 3.5 µg/h of Vanc and 4.5, 5.3 and 3.5 µg/h of Cis, respectively. Nearly inert Cris ceramic showed release kinetics controlled by its hierarchical nanoporous structure. On the other hand, the phase composition and surface chemistry of bioactive Rhe or SCPC ceramics overruled the effect of surface area. The relatively low rate of drug release from SCPC was due to the dissolution-back precipitation reaction taking place on the material surface as confirmed by FTIR bands of surface hydroxyapatite layer at 576.5, 596.7 and 620.7 cm-1. Moreover, the solid solution of crystalline phases of SCPC enhanced the bioactivity of the composite. Nuclear Magnetic Resonance (NMR) and cell culture analyses demonstrated that the interactions between the SCPC dissolution products and the released drug did not cause measurable negative effects on the bioactivity of the tested drugs. The therapeutic effects of the SCPC-Cis hybrid were evaluated using a rat model of hepatocellular carcinoma (HCC). Animals were treated by either systemic cisplatin injection (sCis), or with SCPC-Cis hybrid placed adjacent (ADJ) to, or within (IT), the tumor. Five days after implantation 50-55% of the total cisplatin loaded was released from the SCPC-Cis hybrids resulting in an approximately 50% decrease in tumor volume compared to sCis treatment. Severe side effects were observed in animals treated with sCis including rapid weight loss and decreased liver and kidney function; such effects were not observed in SCPC-Cis treated animals. Analysis of cisplatin distribution demonstrated drug concentrations in the tumor were 21 and 1.5-times higher in IT and ADJ groups, respectively, as compared to sCis treated animals. These data demonstrate the SCPC drug delivery system can provide an effective localized treatment for HCC with significantly reduced toxicity compared to systemic drug administration. Moreover, it is possible to tailor drug release kinetics from SCPC hybrids by controlling the crystalline structure of the material and the ratios of Cris and Rhe in the composite

    Similar works