Dynamic performance of transmission pole structures under blasting induced ground vibration

Abstract

Structural integrity of electric transmission poles is crucial for the reliability of power delivery. In some areas where blasting is used for mining or construction, these structures are endangered if they are located close to blasting sites. Through field study, numerical simulation and theoretical analysis, this research investigates blast induced ground vibration and its effects on structural performance of the transmission poles. It mainly involves: (1) Blast induced ground motion characterization; (2) Determination of modal behavior of transmission poles; (3) Investigation of dynamic responses of transmission poles under blast induced ground excitations; (4) Establishment of a reasonable blast limit for pole structures; and (5) Development of heath monitoring strategies for the electric transmission structures. The main technical contributions of this research include: (1) developed site specific spectra of blast induced ground vibration based on field measurement data; (2) studied modal behavior of pole structures systematically; (3) proposed simplified but relatively accurate finite element (FE) models that consider the structure-cable coupling; (4) obtained dynamic responses of transmission pole structures under blast caused ground vibration both by spectrum and time-history analysis; (5) established 2 in/s PPV blast limit for transmission pole structures; (6) developed two NDT techniques for quality control of direct embedment foundations; and (7) described an idea of vibration-based health monitoring strategy for electric transmission structures schematically

    Similar works