En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)In recent years, text recognition has achieved remarkable success in recognizing scanned
document text. However, word recognition in natural images is still an open problem,
which generally requires time consuming post-processing steps. We present a novel architecture
for individual word detection in scene images based on semantic segmentation.
Our contributions are twofold: the concept of WordFence, which detects border areas
surrounding each individual word and a unique pixelwise weighted softmax loss function
which penalizes background and emphasizes small text regions. WordFence ensures that
each word is detected individually, and the new loss function provides a strong training
signal to both text and word border localization. The proposed technique avoids intensive
post-processing by combining semantic word segmentation with a voting scheme
for merging segmentations of multiple scales, producing an end-to-end word detection
system. We achieve superior localization recall on common benchmark datasets - 92%
recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end
word recognition achieves state-of-the-art 86% F-Score on ICDAR13