We consider a class of generalized capital asset pricing models in continuous
time with a finite number of agents and tradable securities. The securities may
not be sufficient to span all sources of uncertainty. If the agents have
exponential utility functions and the individual endowments are spanned by the
securities, an equilibrium exists and the agents' optimal trading strategies
are constant. Affine processes, and the theory of information-based asset
pricing are used to model the endogenous asset price dynamics and the terminal
payoff. The derived semi-explicit pricing formulae are applied to numerically
analyze the impact of the agents' risk aversion on the implied volatility of
simultaneously-traded European-style options.Comment: 24 pages, 4 figure