Automated resolution of chromatographic signals by independent component analysis-orthogonal signal deconvolution in comprehensive gas chromatography/mass spectrometry-based metabolomics

Abstract

Comprehensive gas chromatography-mass spectrometry (GC x GC-MS) provides a different perspective in metabolomics profiling of samples. However, algorithms for GCx GC-MS data processing are needed in order to automatically process the data and extract the purest information about the compounds appearing in complex biological samples. This study shows the capability of independent component analysis-orthogonal signal deconvolution (ICA-OSD), an algorithm based on blind source separation and distributed in an R package called osd, to extract the spectra of the compounds appearing in GCx GC-MS chromatograms in an automated manner. We studied the performance of ICA-OSD by the quantification of 38 metabolites through a set of 20 Jurkat cell samples analyzed by GCx GC-MS. The quantification by ICA-OSD was compared with a supervised quantification by selective ions, and most of the R2 coefficients of determination were in good agreement (R-2>0.90) while up to 24 cases exhibited an excellent linear relation (R-2>0.95). We concluded that ICA-OSD can be used to resolve co-eluted compounds in GC x GC-MS. (C) 2016 Elsevier Ireland Ltd. All rights reserved

    Similar works

    Full text

    thumbnail-image

    Available Versions