CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Credit card fraud detection using a hierarchical behavior-knowledge space model
Authors
HS Chua
CP Lim
+3 more
A Nandi
KK Randhawa
M Seera
Publication date
20 January 2022
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
Data Availability: All relevant benchmark data are within the manuscript, given in references [24], [25], and [26]. Relevant real data records are available from a public repository: https://doi.org/10.6084/m9.figshare.17030138.Copyright: © 2022 Nandi et al. With the advancement in machine learning, researchers continue to devise and implement effective intelligent methods for fraud detection in the financial sector. Indeed, credit card fraud leads to billions of dollars in losses for merchants every year. In this paper, a multi-classifier framework is designed to address the challenges of credit card fraud detections. An ensemble model with multiple machine learning classification algorithms is designed, in which the Behavior-Knowledge Space (BKS) is leveraged to combine the predictions from multiple classifiers. To ascertain the effectiveness of the developed ensemble model, publicly available data sets as well as real financial records are employed for performance evaluations. Through statistical tests, the results positively indicate the effectiveness of the developed model as compared with the commonly used majority voting method for combination of predictions from multiple classifiers in tackling noisy data classification as well as credit card fraud detection problems.Funding: The author(s) received no specific funding for this work
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Sustaining member
Brunel University Research Archive
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:bura.brunel.ac.uk:2438/239...
Last time updated on 07/02/2022
Monash University Research Portal
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:monash.edu:publications/74...
Last time updated on 22/08/2022