Characterization of the SMOS instrumental error pattern correction over the ocean

Abstract

The Soil Moisture and Ocean Salinity (SMOS) mission was launched on November 2nd, 2009 aiming at providing sea surface salinity (SSS) estimates over the oceans with frequent temporal coverage. The detection and mitigation of residual instrumental systematic errors in the measured brightness temperatures are key steps prior to the SSS retrieval. For such purpose, the so-called ocean target transformation (OTT) technique is currently used in the SMOS operational SSS processor. In this paper, an assessment of the OTT is performed. It is found that, to compute a consistent and robust OTT, a large ensemble of measurements is required. Moreover, several effects are reported to significantly impact the OTT computation, namely, the apparent instrument (temporal) drift, forward model imperfections, auxiliary data (used by forward model) uncertainty and external error sources, such as galactic noise and Sun effects (among others). These effects have to be properly mitigated or filtered during the OTT computation, so as to successfully retrieve SSS from SMOS measurements.Peer Reviewe

    Similar works

    Full text

    thumbnail-image

    Available Versions