Perfect sorting by reversals, a problem originating in computational
genomics, is the process of sorting a signed permutation to either the identity
or to the reversed identity permutation, by a sequence of reversals that do not
break any common interval. B\'erard et al. (2007) make use of strong interval
trees to describe an algorithm for sorting signed permutations by reversals.
Combinatorial properties of this family of trees are essential to the algorithm
analysis. Here, we use the expected value of certain tree parameters to prove
that the average run-time of the algorithm is at worst, polynomial, and
additionally, for sufficiently long permutations, the sorting algorithm runs in
polynomial time with probability one. Furthermore, our analysis of the subclass
of commuting scenarios yields precise results on the average length of a
reversal, and the average number of reversals.Comment: A preliminary version of this work appeared in the proceedings of
Combinatorial Pattern Matching (CPM) 2009. See arXiv:0901.2847; Discrete
Mathematics, Algorithms and Applications, vol. 3(3), 201