American Association for the Advancement of Science (AAAS)
Abstract
How cells sense hydraulic pressure and make directional choices in confinement remains elusive. Using trifurcating Ψ-like microchannels of different hydraulic resistances and cross-sectional areas, we discovered that the TRPM7 ion channel is the critical mechanosensor, which directs decision-making of blebbing cells toward channels of lower hydraulic resistance irrespective of their cross-sectional areas. Hydraulic pressure-mediated TRPM7 activation triggers calcium influx and supports a thicker cortical actin meshwork containing an elevated density of myosin-IIA. Cortical actomyosin shields cells against external forces and preferentially directs cell entrance in low resistance channels. Inhibition of TRPM7 function or actomyosin contractility renders cells unable to sense different resistances and alters the decision-making pattern to cross-sectional area-based partition. Cell distribution in microchannels is captured by a mathematical model based on the maximum entropy principle using cortical actin as a key variable. This study demonstrates the unique role of TRPM7 in controlling decision-making and navigating migration in complex microenvironments.This line of research was supported by the NIH through grants R01-CA183804 (to K.K.), U54-CA210173 (to K.K. and S.X.S.), and R01-GM114675 (to S.X.S. and K.K.), as well as by the Spanish Ministry of Economy and Competitiveness through grants SAF2015-69762R and RTI2018-099718 (to M.A.V.), and an institutional “Maria de Maeztu” Programme for Units of Excellence in R&D (MDM-2014-0370 to M.A.V.) and FEDER funds (to M.A.V.)