We prepare and study a metastable attractive Mott insulator state formed with
bosonic atoms in a three-dimensional optical lattice. Starting from a Mott
insulator with Cs atoms at weak repulsive interactions, we use a magnetic
Feshbach resonance to tune the interactions to large attractive values and
produce a metastable state pinned by attractive interactions with a lifetime on
the order of 10 seconds. We probe the (de-)excitation spectrum via lattice
modulation spectroscopy, measuring the interaction dependence of two- and
three-body bound state energies. As a result of increased on-site three-body
loss we observe resonance broadening and suppression of tunneling processes
that produce three-body occupation.Comment: 7 pages, 6 figure